
Barista Tutorial 3: Define Callpoints

This tutorial builds on Barista Tutorial 1 - Build a Simple Form.

What We Are Going To Build

We'll extend the form we created in the first tutorial by adding our own custom code and options
buttons.

Callpoints
Barista is designed to implement standard business application behavior without the need to write
custom code. There are times, however, when a developer needs to add specialized business logic,
or start a background batch process, or perform some other operation that Barista does not handle
automatically. Barista Callpoints address this requirement.

Options can be added to the button, as individual buttons on the bottom toolbar, or both.
Developer-defined callpoint code determines what a given option will do.

See Getting Started for more detailed background information about Callpoints and Options.

Bring up the Callpoint Editor

Open the Form Manager, select TUT_MAIN_FORM, and click or press F2 to load the Callpoint
Editor.

http://documentation.basis.com/BaristaDIP/Barista%20Tutorial%201%20-%20Build%20a%20Simple%20Form.pdf
http://documentation.basis.com/BaristaDIP/Barista%20Getting%20Started.pdf

Callpoint Editor

The callpoint editor consists of three panels. Along the left is a tree which contains the form, its
columns and their associated callpoints. At a glance one can tell if there is code in a given callpoint
based on the icon (= empty, = non-empty). The upper-right displays the code for the selected
callpoint. The lower-left panel displays compilation and status. When a callpoint is selected, right

clicking the upper-right panel (or clicking) displays a list of code templates which can serve as a
quick reference and save you some typing.

We will use the After Column Validation callpoint to generate a default email address derived from the
name.

● Bring up the Callpoint Editor for TUT_MAIN_FORM.
● Select After Column Validation (AVAL) under TUT_MAIN_FORM.TUT_USER_NAME.
● Add code (note we don't change an existing email value):

if callpoint!.getColumnData("TUT_MAIN_FORM.TUT_USER_EMAIL")="" then
 email$=cvs(callpoint!.getUserInput(),128)+"@acme.com"
 callpoint!.setColumnData("TUT_MAIN_FORM.TUT_USER_EMAIL",email$)
 callpoint!.setStatus("REFRESH")
endif

● Click or press F5 to run the form.
● Add a new record and note the email is automatically populated as you tab out of the User

Name field:

Add AINP Callpoint Code for TUT_USER_EMAIL
Barista provides several validation mechanisms, such as enforcing a minimum length, or performing
a foreign key lookup. There are times you need to perform more complicated validation. The After
Column Input callpoint is called after the user has attempted to leave the callpoint, but before
validation. Here we will check for an obviously invalid email address.

● Select After Column Input (AINP) under TUT_MAIN_FORM.TUT_USER_EMAIL.
● Add code:

rem ' Get the text the user just entered
email$ = cvs(callpoint!.getUserInput(),3)
rem ' Email address must contain exactly one @ sign
if len(email$) and pos("@"=email$,1,0)<>1 then
 email = msgbox("Invalid email address",0,email$)
 callpoint!.setStatus("INVALID")
endif

● Click or press F5 to run the form.
● Attempt to enter an email address with more than one @ sign:

Options Entry Forms
There are times you would like the user to enter data for immediate processing, as opposed to writing
it to a database table. In the next example we will simply write a time-stamped email address and
comment to a text file. This same basic approach can be used to send email, write reports, etc.

We'll start by defining a Table Alias that will be used to generate an Options Entry Form.

Open Tables Maintenance and define the following alias:

Location Field Value
Header Table Alias TUT_DATA_ENTRY

Description Comment Form
Alias Type Options Entry

Detail Element Type Data Element
EXM_TEXT_30 EMAIL
EXM_TEXT_30 COMMENT

If you didn't install the Barista Examples package, you'll need to first define EXM_TEXT_30 as a 30-
character text field in Element Types Maintenance.

Click or press [Ctrl]+S to save this record, then close Tables Maintenance.

Switch back to the Form Manager, click or press [Alt]+F5 to update the list, and double-click on
your newly defined alias to load it in the Form Designer.

● Check Hide saved selection options in Optional Defs for the Alias

● Set the Control Label for the EMAIL field to "Email"
● Set the Control Label for the COMMENT field to "Message"
● Set the Run Program for the alias to ../apps/default/comment.src and save the following

program to apps/default/comment.src under the BASIS home directory. On Windows, the full
name would typically be C:\Program Files\basis\apps\default\comment.src:
email$ = option!.getOptionData("EMAIL")
comment$ = option!.getOptionData("COMMENT")
timestamp$ = new java.util.Date().toString()
message$ = timestamp$+$09$+email$+09+comment$
filename$ = "../apps/default/comment.txt"
string filename$,err=*next
comment = unt
open (comment,MODE="O_APPEND")filename$
print (comment)message$
close (comment)
release

Click or press F5 to run the form, type any values into the entry fields, then click or press F5
again to pass control to the overlay program.

The log file looks like this:
C:\Program Files\basis\apps\default>type comment.txt
Mon Jan 12 21:00:21 PST 2009 suggestions@whitehouse.gov I need a bailout!

Adding an Option Button to display our DATA_ENTRY form
Now we’ll add a button to TUT_MAIN_FORM to display our new form.

Load TUT_MAIN_FORM in the Forms Designer.

Double click the Additional Options attribute for the alias and enter:
Description Code Location
Comment COMM* Menu And Form**

 * Any code will do, up to four characters.

** We can choose to add the option as a button on the form, as an item in the menu, or
both.

Click or press F5 to run the form. It has a new button, but the button doesn't do anything yet.

Next, we'll add code to invoke the TUT_DATA_ENTRY form when the user clicks the Comment
button.

Add Callpoint code for the Option Button

Still in the Form Designer, right-click on the form and bring up the Callpoint Editor.

Under TUT_MAIN_FORMS.<ALIAS>, select After Option Select (AOPT), then select Comment
(COMM) and paste in the following callpoint code:

user_id$ = stbl("+USER_ID")
email$ = callpoint!.getColumnData("TUT_MAIN_FORM.TUT_USER_EMAIL")
dim dflt_data$[2,1]
dflt_data$[1,0] = "EMAIL"
dflt_data$[1,1] = email$
call stbl("+DIR_SYP")
+"bam_run_prog.bbj","TUT_DATA_ENTRY",user_id$,"","",table_chans$[all],"",dflt_data$
[all]

Click or type [Ctrl]+B to rebuild the callpoints for the form, then click or press F5 to run the
form. Now when you select a record and click the button, the overlay program comes up:

By default, options buttons are only enabled when a record is active. This can be changed via the
Additional options always enabled setting in Optional Defs.

Add an editor option via the Add Options attribute in the Form Designer for TUT_MAIN_FORM.

Description Code Location
Editor EDIT Menu and Form

Add callpoint code for Editor (EDIT):
client$ = bbjapi().getThinClient().getClientOSName()
editor$ = "gedit"; rem ' Adjust as necessary for UNIX
if client$ = "Mac OS X" then editor$ = "open –a TextEdit"
if pos("Windows"=client$)=1 then editor$ = "notepad.exe"
bbjapi().getThinClient().clientExec(editor$)

Click or press F5 to run the form:

Save the following program as apps/default/sample.src:
sysgui = unt
open (sysgui)"X0"
sysgui! = bbjapi().getSysGui()
window! = sysgui!.addWindow(100,100,200,200,"Sample")
window!.setCallback(window!.ON_CLOSE,"eoj")
button! = window!.addButton(101,50,50,100,30,"Click",$$)
button!.setCallback(button!.ON_BUTTON_PUSH,"click")
process_events
click:
i=msgbox("Click")
return
eoj:
release

Calling a custom program via an Option Button

Add another option via the Add Options attribute in the Form Designer for TUT_MAIN_FORM

Description Code Location
Sample TEST Menu and Form

Add callpoint code for Sample (TEST):
i=scall("bbj ../apps/default/sample.src")

Click or press F5 to run the form:

Barista automatically takes care of the basics of building standard data-entry forms. Callpoints take
over from there to enable the developer to customize Barista applications as necessary.

Want more? Try the Barista Tutorial 2 - Customize a Form, or the Administration Tutorial, which
shows how to deal with projects, add menu items, users, internationalization.

http://documentation.basis.com/BaristaDIP/Barista%20Tutorial%202%20-%20Customize%20a%20Form.pdf

