
B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 1 • 2 0 0 7www.basis.com 35

 Partnership Language/Interpreter D
BM

S D
evelopm

ent Tools System
 Adm

inistration

hile earlier versions of BBj® allowed access to the client’s filesystem via a fat client deployment, access in a
thin client deployment was not available. Frequently, developers expressed the desire for file access outside
of fat client deployment; they wanted flexible and full access to files and directories anywhere in their client-
server deployment.

BASIS offers two solutions. New MODE="CLIENT" options on the FILEOPEN and FILESAVE functions provide
easy interaction with the client’s filesystem from the traditional standard dialogs. However, when the application
requires a customized dialog, or more flexibility choosing files and directories, enhancements in BBj 7.0 expand the
user’s ability to interact with the client computer. The new BBjFileChooser control and BBjClientFileSystem object
allow unprecedented interaction with the client’s filesystem. This article focuses on the latter solution and the new
freedom developers have to access information, anywhere, regardless of whether it is server- or client-based.

Introduction
The BBjClientFileSystem provides a straightforward interface to handle system-wide file actions. Using
BBjClientFileSystem, the developer can obtain a specific file from the root filesystem, the user’s home directory, or an
absolute path to the desired file. Another new object, the BBjClientFile, provides the API for individual files. Its API
models the Java class called java.io.File, which represents the name of a legal file on the client’s filesystem.
BBjClientFile objects may represent non-existent files or directories, and the API provides methods to create a non-
existent file or directory. Most of the methods on the BBjClientFile match their respective methods on an instance of a
java.io.File. These include self-explanatory methods such as canRead, canWrite, isDirectory, exists, etc. For more
information about the other methods, refer to the BBjClientFile in the online documentation at www.basis.com.

Specifically, these four BBjClientFile methods allow data exchange between the client and the server:

To give these methods context, let us put them to work.
Sample Program
To demonstrate the
BBjClientFileSystem, look
at the sample program
clientFSArticle.src,
downloadable from the URL
noted at the end of this article.
It allows users to select a CSV
file on their own computer to
display in a grid. It uses the
aforementioned getContents and
copyFromClient methods to
obtain the contents of the file in
two different contexts. When
showing a customized client-
side file chooser dialog (see
Figure 1), the sample uses
getContents to show a preview
of the CSV file. It retrieves the
data from the client and places it
into the preview control on the
file chooser dialog displayed on
the client. This allows the user

Desktop Data Delivered
By Adam Hawthorne

continued...Figure 1. The customized file chooser dialog with file preview capabilities

W

RETURN VALUE METHOD
 string BBjClientFile::copyFromClient()

 void BBjClientFile::copyToClient(string fileName$)

 string BBjClientFile::getContents()

 void BBjClientFile::setContents(string contents$)

Adam Hawthorne
Software Engineer

36 www.basis.com

Sy
st

em
 A

dm
in

is
tra

tio
n

 D
ev

el
op

m
en

t
To

ol
s

D
BM

S

 L

an
gu

ag
e/

In
te

rp
re

te
r

Pa
rtn

er
sh

ip

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 1 • 2 0 0 7

to see the contents of the file before selecting it to determine whether the file has a header row. This is a
classic example of going above and beyond the standardized file open dialog; it extends the basic dialog
with preview capabilities and other user options to provide all of the necessary information to display the
CSV file.

Once the user selects a file, the application uses the copyFromClient method to copy the file from the
client’s machine to the server machine, thus obtaining the data in the file. When the sample calls
copyFromClient on the BBjClientFile variable file!, BBj retrieves the data in the file named by the
file! variable, copies it to a temporary file located on the server, and returns the name of the temporary
file. When the copying operation completes, the program parses the file into a CSVTable object and
displays the table in a grid on the client system, as shown in Figure 2. When the program terminates, it
automatically deletes the temporary files that this method created. To retain a copy of the file on the
server after the end of the program, use the RENAME verb to move the file to a different location.

The majority of the code in this sample application comes from parsing the CSV file. The source code that
shows the file chooser dialog and copies the file from the client, including the code to preview files and
respond to events, is relatively small. The supplemental program, csvLibrary.src, provides an object-
oriented model for a simple table and a class with methods to produce the table from a file.

Summary
BBj 7.0 gives developers who leverage these new API tools much greater flexibility in interacting with
the client computer. They can store or retrieve configuration, data files, or even customized programs on
or from the client computer using BBjClientFileSystem and BBjClientFile. Programs can deliver PDF
files, spreadsheets or any other useful files directly to the user’s computer at a location the user chooses
using the BBjFileChooser in client mode and can retrieve configuration or other files as needed. Now,
enjoy the freedom to place files where you need them using the BBjClientFileSystem. Deliver data, right
to your desktop!

Download the sample code from
www.basis.com/advantage/mag-v11n1/clientfilesystem.zip

Figure 2. The contents of the CSV file displayed in a grid

