
B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 1 • 2 0 0 7www.basis.com 33

 Partnership Language/Interpreter D
BM

S D
evelopm

ent Tools System
 Adm

inistration

S
Unleashing the Power of SPROCs Without SQL
By Jeff Ash

Jeff Ash
Software Engineer

continued...

tored procedures are a powerful and very flexible part of
the SQL engine inside BBj®. They give developers a way
to embed callable program logic in the database, thereby
making it available to BBj and any other third party
ODBC/JDBC application. One of the features stored

procedures provide is the ability to return a result set to the client
application. Prior to BBj 7.0, developers could return any result set
based on an SQL query from an SQL channel. Now, stored procedures
can return an SQL record set or the new SQL-less Memory Record Set,
further expanding the power and flexibility of stored procedures. This
article focuses on how to create a memory record set from information
generated by an SQL-less query. Additionally, this article illustrates
how to create a stored procedure programmatically.

What is an SQL Result Set?
Stored procedures have the option of returning nothing, a single value, or an entire result set of data to
the client application. An SQL result set consists of zero or more records where each record is
comprised of one or more columns of information such as name, address, phone number, etc.

What is a Memory Record Set?
The new Memory Record Set, created from BBjAPI: createMemoryRecordSet, makes it possible for a
stored procedure to return a result set made up of arbitrary information that the stored procedure builds
in any way the developer sees fit. For example, a stored procedure could use existing business logic with
READ RECORD file operations to gather its information. Then, this information can be placed into a
memory record set and sent back to the client application. The client application sees this information in
the same way as a result set created from an SQL query. Thus, any BBj or third party ODBC/JDBC
application can use it just like an SQL SELECT result.

Creating and Using a Memory Record Set
Creating a memory record set requires that the developer define the layout of the records to be contained
in the record set. To do this, use the following string template:

Now, adding values to the Memory Record Set is easy. This code snippet inserts a single record into the
Memory Record Set:

If the record set has more than one column defined in it, simply add more setFieldValue calls to set the
additional column values. When the stored procedure has finished populating the record set, it must
return that record set to the SQL engine so that the client application can receive the information. To do
this, simply call the new setRecordSet method on the BBjStoredProcedureData object.

A Sample Stored Procedure Utilizing a Memory Record Set
The following CREATE PROCEDURE call creates a stored procedure named GET_ITEMS in the
ChileCompany sample database that demonstrates using READ RECORD statements to populate a
Memory Record Set, and returns that record set to the client application as an SQL result set. To create
the stored procedure, execute the SQL code in Figure 1 using the BBj Enterprise Manager. Right-click
on the ChileCompany database, select the “Execute SQL” option, and paste in the code.

34 www.basis.com

Sy
st

em
 A

dm
in

is
tra

tio
n

 D
ev

el
op

m
en

t
To

ol
s

D
BM

S

 L

an
gu

ag
e/

In
te

rp
re

te
r

Pa
rtn

er
sh

ip

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 1 • 2 0 0 7

CREATE PROCEDURE get_items (prod_cat CHAR(2) IN) RESULT_SET
{_BEGIN_}
 REM Open the file
 chan = UNT
 OPEN (chan) "C:\Program Files\basis\demos\chiledd\data\ITEM"

 REM Get the parameter value specified by the calling program
 sp! = BBJAPI().getFileSystem().getStoredProcedureData()
 prod_cat$ = sp!.getParameter("PROD_CAT")

 REM Create a memory record set to hold the results of
 REM our read operations.
 rs! = BBJAPI().createMemoryRecordSet("ITEM_NUM:C(6)")

 REM Iterate over the file and find the items that
 REM have the specified PROD_CAT
 TMPL$ = "ITEM_NUM:C(6),DESC:C(30),PROD_CAT:C(2),STOCK_UOM:C(3),"
 TMPL$ = TMPL$ + "COST:N(12),WEIGHT:N(12),WT_UNIT:C(2),PRICE:N(12)"
 DIM REC$:TMPL$
 while (1)
 READ RECORD (chan, ERR=eof) rec$
 if (rec.prod_cat$ = prod_cat$) then
 REM Found a match, so add it to the Record Set
 data! = rs!.getEmptyRecordData()
 data!.setFieldValue("ITEM_NUM", rec.item_num$)
 rs!.insert(data!)
 endif
 wend

eof:
 CLOSE (chan)

 REM Set the returned result set value to the record set.
 sp!.setRecordSet(rs!)
{_END_}

Now that the database contains the stored procedure,
it is ready for use. To test this stored procedure,
simply execute the following SQL CALL statement
directly from the Enterprise Manager’s SQL
Browser dialog:

CALL get_items('CH')

The results appear as a list of the items in the
database with a PROD_CAT of CH as shown in
Figure 2.

Summary
Stored procedures offer a method of executing SQL
on the server side of a client-server application,
delivering enormous performance benefits when
sorting through large volumes of data. Oftentimes,
the developer can sort or process that data more
efficiently using the fast READRECORD constructs
of the BASIS language. Now using memory
record sets, developers can more easily reuse
existing business logic and data structures created in
BBj, in their stored procedures, extending the power
of the BBj language to the world of third party
applications.

Figure 2. Result of the SQL CALL statement

Figure 1. Sample stored procedure

