
40 www.basis.com

Sy
st

em
 A

dm
in

is
tra

tio
n

 D
ev

el
op

m
en

t
To

ol
s

D
BM

S

 L

an
gu

ag
e/

In
te

rp
re

te
r

Pa
rtn

er
sh

ip

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 1 • 2 0 0 7

Catching the XML Wave
How I Used BBjCustomObjects to Utilize XML
By Brian Hipple

continued...

A
s a BBx® Web services developer,
I have longed for XML support
in the BASIS Products Suite.
While BBj® does not directly
support XML, it does support

embedded Java code and the many Java
XML packages that create and manipulate
XML documents. Therefore, the great
news is that I, or any BASIS developer,
can create BBj Custom Objects to simplify
the rather complex interaction with Java’s
XML packages and extend functionality
not provided by the Java implementation.
Any BBj application can then use these
custom objects in a traditional fashion.

What is XML?
XML, or EXtensible Markup Language, is
a cross-platform software- and hardware-
independent tool for transmitting information.
XML is much like the familiar HTML, Hyper Text Markup Language, although XML’s main function is to
describe the data rather than format and display data as HTML does. Both languages use tags, which are keywords
surrounded by <> to convey information for the data. The tags used in HTML documents are predefined and the
creator of an HTML document can only use tags that are defined in the HTML standard (<p>, <h1>, etc.). In
XML, the tags are not predefined; the document
author must define them. Figure 1 is an
example of an XML document in the BASIS
IDE XML Editor.

Why use XML?
XML technology allows developers to future-
proof their applications and services, ensuring
that the data they are managing today will easily
adapt to future needs. With XML, developers can
transform today’s data into new data formats as
they emerge or build new applications and
services to accomplish new tasks with existing
data. XML also serves as a common platform for
transmitting and sharing data between disparate
systems, allowing the rapid development of Web
services that query, retrieve, and share data
among many sources. (http://www.sitepoint.com/
books/xml1/)

XML is not just a universal data format; it is also
a universal library of tools that includes XSLT,
XPath, XQuery, and DOM. Developers use these
tools for transforming documents between otherwise incompatible formats, presenting data in particular sample
styles and formats, querying data from data sources, and manipulating data in a hierarchical, tree-like form. XML
standards are implemented in every major programming language, ensuring developers that they can always
access their most important asset in the future – their data. (http://www.sitepoint.com/books/xml1/)

Why use BBj Custom Objects?
BBj version 6.0 introduced BBj Custom Objects that enable developers to make use of object-oriented
programming. My decision to use a BBj Custom Object for my XML functionality enabled me to reap the benefits
these objects provide: increased development resources, maintainability, readability, and reusability. I was able to
streamline functionality into the most commonly-used methods; therefore, a BBj developer should be able to
easily decipher the methods.

Figure 1. A sample XML document

Brian Hipple
QA Test Engineer
Supervisor

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 1 • 2 0 0 7www.basis.com 41

 Partnership Language/Interpreter D
BM

S D
evelopm

ent Tools System
 Adm

inistration

continued...

Reusability is a major advantage of using a BBj Custom Object. Once I thoroughly tested my object, any BBj
application could now use this object to access XML documents with the assurance of quality. Incorporating this
functionality separately into each application would have required a great deal more coding and testing.

The Custom Object - XMLDoc
The resultant BBj Custom Object name is XMLDoc, which includes multiple constructors that provide for the
creation of an XMLDoc object from a new document, an existing document, a string, or from a specified URL.
The XMLDoc methods provide many commonly used XML functions such as addRootElement, addElement,
setAttribute, addTextNode, and addCommentNode. Along with these methods are the combination of
these methods for a macro-type interface which are not provided in the Java XML APIs that includes
addElementWithAttribute, addElementWithAttributes, and addElementWithTextNode. Search and destroy
methods getAllMatchingNodes and removeAllMatchingNodes will search or remove nodes based on criteria such
as a “node name” and “type of node.” Also, the output method writeToConsole can write the XMLDoc to the
BBj console for debugging purposes and writeToFile writes the contents of the XMLDoc to a new file. Figure 2
shows the XMLDoc source that employs these methods.

Figure 2. XMLDoc source code

Using the XMLDoc Object
To exercise the XMLDoc object in an application, I wrote a small BBx program named WeatherXMLDemo.bbj.
This program passes the URL for a weather site with parameter information that requests the seven-day forecast,
in XML format, for any zip code.

This creates an instance of an XMLDoc that can then retrieve the forecast data and display this information in a
grid. See WeatherDemo code in Figure 3 and the results in Figure 4.

This program shows just how easy it is to retrieve information from the internet in XML that many Web services
provide – and use this data in your application. Simple applications like this weather retrieval program
demonstrate the use of XML to transfer information over the Web, but it does not end there. XML is highly
adaptable and works well for applications with widely differing degrees of complexity.

42 www.basis.com

Sy
st

em
 A

dm
in

is
tra

tio
n

 D
ev

el
op

m
en

t
To

ol
s

D
BM

S

 L

an
gu

ag
e/

In
te

rp
re

te
r

Pa
rtn

er
sh

ip

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 1 • 2 0 0 7

Figure 3. The WeatherXMLDemo source code

Figure 4. The WeatherXMLDemo application

Recently, I consulted with a BASIS customer on their Ford Motor
Company Web service that transferred all the information in XML,
including parameters for all the methods. It was evident to me they
chose XML for future compatibility. For example, if one of the Web
service methods should require more information, the XML
specification will change for the method, but the method signature
does not have to change. As a result, this customer would not need to
make any changes to the client application.

Summary
It amazes me that XML has become the standard data format for
transferring information over the internet in such a relatively short
period or time. While the BBj Custom Object that I created provides basic XML functionality, my hope is that over
time I, or another BBx developer, will take this object and extend its functionality. For example, we could
incorporate the ability for a DTD or XML schema to describe the XML in detail and validate the XML, or the
ability to use XML Namespaces to avoid element name conflicts by providing qualifications in the XML
documents. Using Custom Objects in BBj with the strength of the Java XML API gives BBx developers the ability
to harness this data standard and provide information that will thrive and prosper for many years to come. XML
puts your data and application in the fast lane!

Download and run the sample referenced in this article at
www.basis.com/advantage/mag-v11n1/XML.zip

A Primer for Using BBj Custom Objects
www.basis.com/advantage/mag-v10n1/primer.pdf

Applying Custom Objects to Existing Code
www.basis.com/advantage/mag-v10n1/custom.pdf

