
B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 2 • 2 0 0 8 www.basis.com 1

 Partnership Language/Interpreter DBM
S Development Tools System Administration Applications

he BBj® API is a toolkit full of solutions for everyday business
needs. Businesses of varying sizes may have the need to integrate
charts into applications, map data from a database to human-readable
information, or even transfer files between client and server. These
very viable requirements are now extremely easy to deliver.

Part I
While BASIS continues to add to the breadth of the API, it is possible that the
ready-made solutions developers are looking for do not yet exist within the BASIS API. This does not mean they must
develop the entire solution themselves. BBj allows developers to integrate Java objects into their application, and with BBj
Client Objects, they can perform the work on the client’s side.

Say, for example, you are a
business with several sales
offices that needs an intranet
application to convert a
customer query from your
BBj databases instantly to
an Excel spreadsheet. There
are, of course, several ways
of achieving this task. One
solution is to use the BBj
ODBC Driver with Microsoft
Excel, however it requires that
the users have Microsoft Excel
and ODBC configured on their
machine.

Perhaps a better solution would
be to use a Java library that
reads and writes Excel files
(see Figure 1), and then
creates the Excel files
programmatically. Your
system administrator could use
JNLP (Java Network Launch
Protocol) to deploy the BBj
program that performs this
task, thus making the program
easily accessible via a URL on
the business' internal Web site.
Users could create the Excel
files on their own machines
(instead of the server) using
BBj’s new ClientObjects.
While the client systems must
have Java installed, they do
not require Microsoft Excel or
ODBC to create the Excel
document on their machine.

T

Shaun Haney
Quality Assurance
Engineer

Figure 1. Example of a Java library

continued...

Quick and Easy Solutions With Free Java Libraries
By Shaun Haney

Part II
Finding and Downloading a Java Library
The Web offers a plethora of libraries for free download. Simply perform a search to find just the right one to assist with
your development requirements. This tutorial focuses on the need for a Java Library that reads and writes Excel files. A
quick Google search using “java excel” in the search field locates the Apache POI (Poor Obfuscation Implementation)
library. This suite of libraries allows reading and writing of various Microsoft Office document formats programmatically,
making it possible to write BBj applications to create output files compatible with Excel.

2 www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 2 • 2 0 0 8

Ap
pli

ca
tio

ns

Sy

ste
m

 A
dm

ini
str

ati
on

 D
ev

elo
pm

en
t T

oo
ls

DB
M

S

La
ng

ua
ge

/In
ter

pr
ete

r

 P
ar

tne
rsh

ip

 Follow along with this tutorial as an example of how to

download and utilize the Apache POI library.

Download the Java library
1. Go to http://poi.apache.org and locate the subhead 	
 (see Figure 2) that displays the latest release, which as 	
 of this publication date is POI 3.1-FINAL Released 	
 (2008-06-29).

2. Click on “download” (or “local mirror”).

3. Click on the suggested mirror site to download the 	 	
 library.

4. Choose the bin directory.

5. On the page for the bin directory, you will see both tar.gz and .zip format files listed.
	 a. For Windows, download the zip file.
	 b. For non-Windows operating systems, download the tar.gz file.

6. Choose a directory into which you want to extract the downloaded archive file and proceed with the extract process.
 (I used WinZip to extract the files into my H:\Work\Advantage\POI directory.)

7. Locate the JAR files.
 (I will be using poi-bin-3.1-FINAL-20080629\poi-3.1-FINAL\poi-3.1-FINAL-20080629.jar.)

 For future library downloads, confirm the actual JAR files you need for a particular library by doing the following:
 • Read the available installation and API documentation that comes with the Java library.
 • Browse the JAR file in the IDE as discussed in the "Exploring and Using JARs in the IDE" section.

Adding the JARs to the BBj Classpath
Before you can use these Java classes in BBj, you must add the classes to BBj’s classpath.

1. Launch Enterprise Manager and log into localhost.

 If BBjServices is running on a different computer, copy the JAR to that machine before adding the JAR to its classpath. 	
 Make sure that “Server Information” appears on the left side, then select the Classpath tab and press the top green [+] 	
 button to launch a file open dialog. Navigate to the poi-3.1-FINAL-20080629.jar.

2. Double-click on poi-3.1-FINAL-20080629.jar to add it to the list of JARs and directories in BBj’s classpath.

In this example, you work for a business with
several sales offices and need an intranet
application to convert a customer query from your
BBj databases instantly to an Excel spreadsheet.
You would like to use a Java library that reads
and writes Excel files, and then creates the Excel
files programmatically. Your system administrator
will use JNLP (Java Network Launch Protocol) to
deploy the BBj program that performs this task,
thus making the program easily accessible via the
intranet. Users could create the Excel files on their
own machines (instead of the server) using BBj’s
new ClientObjects.

Figure 2. Current release of Apache POI

continued...

http://poi.apache.org/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 2 • 2 0 0 8 www.basis.com 3

 Partnership Language/Interpreter DBM
S Development Tools System Administration Applications

continued...

3. To save the JAR into the classpath, click the button that appears as a little disk icon on the bottom right corner of the window.

4. Restart BBjServices.

Exploring and Using JARs in the IDE
The IDE makes the BBj developer’s life easier by providing features such as code completion and ready access to
compilation and execution at the touch of a button. In addition to these features, the IDE also allows developers to explore
methods and fields of classes in Java JARs. This is a good way to become familiar with JARs that contain classes with an
unfamiliar API. By allowing the developer to examine the structure of the JAR, the IDE provides the developer with a map
of the API.

To mount the poi-3.1-FINAL-20080629.jar in the IDE,

1. Launch the IDE and choose the Filesystems tab in the IDE.

2. Right click on the root node of the tree labeled Filesystems and choose Mount from the pop-up menu.

3. Choose Archive Files from the submenu. A File Open dialog appears.

4. Navigate to the location of poi-3.1-FINAL-20080629.jar and select the JAR.

5. Click [“Finish”] to mount the JAR in the Filesystems tree.

In addition to being able to explore the JAR, you now have code completion available in your BBj program on all of the
classes in the JAR (shown in Figure 3).

Figure 3. Code completion from mounted JARs				 Figure 4. Exploring a mounted a JAR in the IDE

After mounting the JAR in the IDE, expand the JAR and notice the Java classes, their constructors, methods, and fields.
Roll the mouse over the classes to see tooltips listing the parameters they take. By exploring a JAR this way, developers
can get hints of what functionality the Java classes provide, and what they might look for in the API’s documentation as
seen in Figure 4.

4 www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 2 • 2 0 0 8

Ap
pli

ca
tio

ns

Sy

ste
m

 A
dm

ini
str

ati
on

 D
ev

elo
pm

en
t T

oo
ls

DB
M

S

La
ng

ua
ge

/In
ter

pr
ete

r

 P
ar

tne
rsh

ip

Next, write a BBj program (Figure 5) and then embellish the code to include the BBjClientFileSystem for accessing files on
the client instead of the server.

Confirm that the BBj Sample works on the same machine without the use of Client Objects, then convert the program to use
ClientObjects by adding an @ where appropriate. Figure 6 shows a comparison of the program before and after the changes,
taking advantage of the BASIS IDE’s built-in graphical diff capabilities.

Figure 6. Graphical diff of the Client Object code

Figure 5. BBj program that programmatically creates an Excel worksheet

continued...

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 2 • 2 0 0 8 www.basis.com 5

 Partnership Language/Interpreter DBM
S Development Tools System Administration Applications

continued...

JAR Registration
For development purposes, obtain a DVK license from BASIS. It allows you to integrate Java classes as client objects into BBj
applications during development. Remember to register your JAR files with BASIS before final distribution of your application
so that clients can run BBj programs that utilize Client Objects without nag messages. Registering a JAR is easy to do, either in
BBj or from the command line. To register the JAR, enter the following statement:

In BBj

From the command line (with an appropriately set Java classpath)

 java com.basis.jarreg.client.JarRegistrar c:\temp\poi-3.1-FINAL-20080629.jar c:\temp\dist\poi-3.1-FINAL-20080629.jar

Note: This example assumes that the original unregistered JAR is in c:\temp and that c:\temp\dist already exists
but does not contain the new JAR before you run the command. Registering a JAR allows programs to use the JAR for the
current version of BBj and any future releases. For example, if you were to register the JAR using BBj 10.0, the JAR would
be usable in versions 10.x, 11.x, and 12.x, but not in 9.x.

Deploying Applications Using the JNLP
To save your system administrators and internal users the time and hassle of installations and updates, make your applications
available on your company intranet via JNLP. The only real deployment required is configuring the Web server and uploading
your applications to it. Users can access their application and updates the moment they are available; they do not even have to
be aware that updates are available because the updates occur automatically the first time the user clicks on the icon after the
JNLP files are updated.

Configuring JNLP is different depending on the type of Web server used. Since Apache is quite common, use this as the
example for setting up the JNLP.

Readying Apache for JNLP
	 1. In the Apache installation, locate the <Apache install>\conf\mime.types file and verify that it has the 			
 	 following entry:

 	 application/x-java-jnlp-file		 jnlp

	 2. Add the line if it is not present, and restart the Apache server.

Create a Subdirectory Under the Root Web Directory for the Application
Find out which directory the Apache Web Server keeps its documents by looking for the DocumentRoot directory specification
in the <Apache install>\conf\httpd.conf file. There will be an entry like the following:

	 # DocumentRoot: The directory out of which you will serve your
	 # documents. By default, all requests are taken from this directory, but
	 # symbolic links and aliases may be used to point to other locations.
	 #
	 DocumentRoot "C:/Program Files/Apache Software Foundation/Apache2.2/htdocs"

To change the directory, search the file for any occurrences of “DocumentRoot” and change any directories that need to be the
same as DocumentRoot accordingly.

Under the DocumentRoot directory, create a directory called excel_demo. Into this directory, copy the BBj program that tests
the POI API, and the necessary BBj JARs.

In order to load and use the JARs in the JNLP, you must sign them; if not, you will get an error trying to run the JNLP that
says it cannot verify the JARs. In order to sign the JARs, generate a key (as shown in Figure 7) and then use the key to sign
the JARs (as shown in Figure 8). We generate the key with the “keytool” executable that comes with the Java JDK. Launch a
terminal or a command prompt and perform the steps shown in Figures 7 and 8. (In the portion that says “Enter key password
for <excel>,” press [Enter].)

6 www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 2 • 2 0 0 8

Ap
pli

ca
tio

ns

Sy

ste
m

 A
dm

ini
str

ati
on

 D
ev

elo
pm

en
t T

oo
ls

DB
M

S

La
ng

ua
ge

/In
ter

pr
ete

r

 P
ar

tne
rsh

ip

 c:\shaun_exp\htdocs\excel_demo>keytool -genkey -keyalg rsa -keystore excelkeystore -alias excel

Enter keystore password: excel6
What is your first and last name?
 [Unknown]: Shaun Haney
What is the name of your organizational unit?
 [Unknown]: Quality Assurance
What is the name of your organization?
 [Unknown]: BASIS International Ltd.
What is the name of your City or Locality?
 [Unknown]: Albuquerque
What is the name of your State or Province?
 [Unknown]: New Mexico
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=Shaun Haney, OU=Quality Assurance, O="Basis International Ltd. ", L=Albuquerque, ST=New
Mexico, C=US correct?
 [no]: yes

Enter key password for <excel>
 (RETURN if same as keystore password):

c:\shaun_exp\htdocs\excel_demo>

Figure 7. Generate a keystore

Once you have made the keystore, use it to sign the JARs by typing the text in Figure 7 at the command line:

c:\shaun_exp\htdocs\excel_demo>jarsigner -keystore excelkeystore BBjThinClient.jar excel
Enter Passphrase for keystore: excel6

Warning: The signer certificate will expire within six months.

c:\shaun_exp\htdocs\excel_demo>jarsigner -keystore excelkeystore BBjUtil.jar excel
Enter Passphrase for keystore: excel6

Warning: The signer certificate will expire within six months.

c:\shaun_exp\htdocs\excel_demo>jarsigner -keystore excelkeystore poi-3.1-FINAL-20080629.jar
excel
Enter Passphrase for keystore: excel6

Warning: The signer certificate will expire within six months.

c:\shaun_exp\htdocs\excel_demo>jarsigner -keystore excelkeystore webstart2166.jar excel
Enter Passphrase for keystore: excel6

Warning: The signer certificate will expire within six months.

Figure 8. Use the keystore to sign the JAR Files

The warning "The signer certificate will expire
within six months" occurs when there is no certificate
purchased from a provider like VeriSign. For a small
“proof of concept” project such as this one, a six-
month certificate provides more time than needed.
For a larger project, you will need to purchase a
certificate. Certificate providers such as VeriSign
provide instructions for using the certificate in a
signed JAR.

continued...

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 2 • 2 0 0 8 www.basis.com 7

 Partnership Language/Interpreter DBM
S Development Tools System Administration Applications

Create the JNLP File
To get a JNLP file that can run BBj, refer to the BASIS documentation Running BBj Thin Client with Java Web Start.
Modify the example in the documentation to become the JNLP File in Figure 9.

<?xml version="1.0" encoding="utf-8"?>
<!-- JNLP File for b-commerce Application -->
<jnlp spec="1.0+" codebase="http://stewey/excel_demo" href="excel_demo.jnlp">
<information>
<title>Test for using POI HSSF in BBj</title>
<vendor>BASIS International Ltd.</vendor>
<description>This application creates an Excel spreadsheet on the client's machine.</description>
<description kind="short">Create an Excel spreadsheet</description>
</information>
<security>
<all-permissions/>
</security>
<resources>
<j2se version="1.5+" initial-heap-size="24m" max-heap-size="24m"/>
<jar href="BBjThinClient.jar"/>
<jar href="BBjUtil.jar"/>
<jar href="poi-3.1-FINAL-20080629.jar"/>
</resources>
 <resources os="Windows 95">
 <nativelib href="webstart2166.jar"/>
 </resources>
 <resources os="Windows 98">
 <nativelib href="webstart2166.jar"/>
 </resources>
 <resources os="Windows Me">
 <nativelib href="webstart2166.jar"/>
 </resources>
 <resources os="Windows NT">
 <nativelib href="webstart2166.jar"/>
 </resources>
 <resources os="Windows 2000">
 <nativelib href="webstart2166.jar"/>
 </resources>
 <resources os="Mac OS X">
 <nativelib href="webstart2120.jar"/>
</resources>
<application-desc main-class="com.basis.bbj.client.comm.WebStartLauncher">
	 <argument>-q</argument>
	 <argument>-RHstewey</argument>
<argument>-cc:/progra~1/basis/cfg/config.bbx</argument>
<argument>c:/shaun_exp/htdocs/excel_demo/MakeExcelDocumentSample.bbj</argument>
</application-desc>
</jnlp>

Figure 9. JNLP File for the Example POI application.

Connect to the JNLP Application and Run it
Now launch the application from the Web browser and see it run. (Since I am working at a machine named “stewey,”
enter http://stewey/excel_demo/excel_demo.jnlp in the address bar of my browser,)

1. Enter the name of your JNLP file into your browser.

 First, you will see a “Java Loading” splash screen, then a security warning. The security warning occurs because 	
 there is no purchased certificate from a certificate provider.

2. Click the [Run] button.

 A familiar BBj console pops up and falls to a prompt. The program creates a new Excel file that populates its first 	
 two cells with “Hello” and “World!” on a sheet labeled “First.”

continued...

http://www.basis.com/onlinedocs/documentation/whcsh_home.htm#id=140
http://stewey/excel_demo/excel_demo.jnlp

8 www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 2 • 2 0 0 8

Ap
pli

ca
tio

ns

Sy

ste
m

 A
dm

ini
str

ati
on

 D
ev

elo
pm

en
t T

oo
ls

DB
M

S

La
ng

ua
ge

/In
ter

pr
ete

r

 P
ar

tne
rsh

ip

This simple example has a few obvious flaws. The absolute path most likely does not exist on the client’s
machine, which will cause the program to fail. A more in-depth example would have the user browse for his file
location or allow the user to configure where on his machine to save the file via a properties file. In order to do a
meaningful task, we would need to incorporate a database query or other means of getting information that would
be useful to the client. The demo does, however, show the powerful functionality ClientObjects and the JNLP can
add to a BBj program.

Summary
In this tutorial, you integrated a free open source Java library that creates Excel files into a BBj program and
made this functionality available to clients in a distributed environment. The ability to integrate Java Objects
into BBj makes BBj a very extensible tool. A developer can add almost any feature the BBj API does not already
contain by creating or searching for a Java Object that does the job and adding it to BBj’s classpath. ClientObjects
make it possible to distribute the Java Objects to clients in a client-server environment. The JNLP makes this
distribution nearly seamless, eliminating the need to install the application on each user’s machine thereby saving
an enormous amount of time. BBj is a truly valuable and cost efficient tool for a company’s intranet application
suite. With BBj, the Java library world is your oyster, go and seek your pearls!

