
24 www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 2 • 2 0 0 8

Ap
pli

ca
tio

ns

Sy

ste
m

 A
dm

ini
str

ati
on

 D
ev

elo
pm

en
t T

oo
ls

DB
M

S

La
ng

ua
ge

/In
ter

pr
ete

r

 P
ar

tne
rsh

ip

ransactions in SQL are a useful tool for preserving data integrity.
With BASIS’ ESQL tables, BBj® developers are now able to exploit
that tool without the need to use a third party database. To use
transactions appropriately, 	it is necessary to understand the important
concepts in this article regarding their benefits and limitations.

Transactions Reviewed
Simply stated, transactions are a mechanism for grouping database operations into a single unit. This might be as straightforward
as a single update or as complicated as several selects, inserts, and updates on different ESQL tables. This group of operations
can then be either committed or rolled back. Committing a transaction makes every operation persistent, while rolling the
transaction back will reverse every operation. Either will unlock all resources locked by the transaction. If the server machine
crashes while a transaction is still in progress, the transaction operations automatically roll back, leaving the ESQL tables in a
known good state. This means that either all of the operations in a transaction will persist in the database or none of the operations
will take effect. The developer never has to worry that only part of a list of operations will persist in the database.

In addition, developers can create savepoints – intermediate stages of a transaction to which they can roll back – leaving the
transaction as a whole open rather than rolling back the entire transaction. Later, they can choose to either commit or roll
back all of the other operations in the transaction. Transactions are in auto-commit mode unless the developer chooses to
use transactions explicitly. This simply means that each individual SQL statement runs inside its own transaction, generally
transparent, that is automatically committed when the statement completes.

Things to Keep in Mind
Using transactions requires ESQL tables. BBj transactions need substantial file support to work properly so they do not work
with traditional BBx® files. BBj transactions are table-oriented and do not handle SQL meta operations. Developers cannot roll
back operations such as create database, drop database, create table, and drop table in a transaction.

Because of the data integrity guarantees provided by transactions, they must lock various database resources as the data is
read and changed. After all, two transactions cannot change the same data since the client might choose to roll back either
transaction. This would lead to a lot of confusion and unpredictable behavior. As a result, individual transactions should only
be maintained for short periods of time. In particular, never leave a transaction open while an application waits for user input.
While this is possible, it leads to slowness as it blocks several users waiting on another user. It is also valuable for clients to
use read-only database connections when they do not need to write data to the database. Transaction locking for a read-only
connection is much less restrictive than locking in a read-write connection. Read-only database connections allow clients to
share database resources much more efficiently.

Transaction Isolation
The primary configuration for individual transactions is the transaction isolation level, which controls accessibility of the data
that other transactions are concurrently modifying. In other words, transactions view data based on their own isolation levels
rather than the isolation levels of other transactions. The Java API provides five different transaction isolation levels, each of
which has different blocking behavior in accordance with the transactions' visibility. In general, the more restrictive the reads,
the more blocking is required. The transaction levels range from TRANSACTION_NONE, which indicates that transactions
are not used or are unsupported, to TRANSACTION_SERIALIZABLE, which is the strictest.

Summary
If you have not dipped your toes into ESQL files, now is definitely the time to dive in, head first. With the latest addition of
transactional support, ESQL files further the concept of data availability and reliability. Because the JDBC API and many third
party tools support SQL transactions, you can take the big plunge and start working with transactions today!

For more about ESQL tables and isolation levels, refer to the online documentation at
www.basis.com/onlinedocs/documentation/flash and search the index for:
	 ESQL Overview
	 Connecting Using the JDBC Driver

Read the BASIS International Advantage article
Implementing Journaled Files and Transaction Tracking

 www.basis.com/advantage/mag-v6n1/journaled.html

T

Chris Hardekopf
Software Engineer

Take a Plunge Into SQL-Transactions
By Christopher Hardekopf

www.basis.com/onlinedocs/documentation/index.htm#<id=309
www.basis.com/onlinedocs/documentation/index.htm#<id=309
www.basis.com/onlinedocs/documentation/index.htm#<id=32

