BBj Form Printing

By Jason Foutz

he new BBjPrinter system provides developers with a powerful new Application Programming Interface (API) for
creating forms. This unified system makes it easy to add images to forms and simplifies the programmatic creation
of documents containing letterheads and logos. The BBjPrinter object provides methods for laying out text, lines,
and images on a page. In addition, developers can now effortlessly use different fonts on the same page with this
new API.

The new printer system provides a complete object hierarchy that gives developers control over every aspect of printing -
from selecting printers to how a line appears on a page. The BBjPrinter object allows the user to select a printer for BBj®
Services to use and start printing. BBjPrinter allows developers to obtain a BBjPrintDoc, which represents the current
document the program creates. The developer can then preview or print this document.

A BBjPrintPage represents a single page of the BBjPrintDoc. The BBjPrintPage object provides methods for creating and
laying out lines, images, and blocks of formatted text. Using a BBjPrintPage, programmers can now create BBjPrintLine,
BBjPrintimage, or BBjPrintParagraph objects.

The first step to using the new print system is to obtain a BBjPrinter. The BBjPrinter object represents a printer that BBj
interacts with and provides configuration properties such as paper size, margin width, and orientation. Obtain the default
printer object using the calls below:

LET myAPI ! =BBj API ()
REM
LET nyBBj Printer!=nyAPI!.getBBjPrinter(0)

After obtaining a BBjPrinter, developers can then query for a list of all available printers on the servers or the client.
Moreover, developers can change this instance of BBjPrinter to represent any other printer.

The second step is to create a BBjPrintDoc. Using the BBjPrinter object, obtain a new BBjPrintDoc using this call:

REM
LET nyBBj Print Doc! =nyBBj Printer!.getPrintDoc(1)

The newly created BBjPrintDoc represents an empty document with which to work. This document represents a collection
of pages, all of which are available for preview or printing.

The third step is creating a new page to work with by using this call:

REM
LET nyBBj Pri nt Page! =nyBBj Pri nt Doc! . get NewPage()

This call creates the page; it does not add the page to the document. To add the page to the document, use this call:

REM
nmyBBj Pri nt Doc! . addPage(nyBBj Pri nt Page!)

Pages are the foundation of forms. Developers can add the page at any time and they print in the order of addition.
Furthermore, the pages created can contain BBjPrintObjects such as BBjPrintParagraph and BBjPrintLine.

The BBjPrintObject provides all of the methods for laying out a page, such as setPosition and setSize. In addition to the
other methods available in the BBjPrintObject, these two methods provide complete control over page layout.
BBjPrintParagraph, BBjPrintLine, and BBjPrintImage all extend BBjPrintObject and their layout uses the same methods
included in the BBjPrintObject.

continued...

www.basis.com BASIS International Advantage = 4th Quarter 2003

After creating a page, the next step is to add a sampling of BBjPrintObjects to this page. The code sample below
shows how to add text, construct a paragraph object, set its text, and add the paragraph back to the page.

REM
LET para! =nyBBj Pri nt Page! . newPar agr aph()

REM
para! . set Text ("some sanple text")

REM
myBBj Pri nt Page! . add(para!)

The BBjPrintParagraph object automatically fits the text into the available space. The BBjPrintParagraph adjusts its
height automatically to take up as much vertical space as necessary to fit all of the text on the page with a call to
this method:

REM
par a! . set Aut 0Adj ust Hei ght (1)

The paragraph object provides control over how the text flows on a page. If automatic height causes the text to use
more space than looks appropriate, developers can set the size explicitly. In addition to sizing, paragraph
justification is also available. For example, use the call below to make the text left justified:

REM
para! . set Hori zontal Al i gnnent (para! . LEFT_JUSTI FI ED)

To add lines to the page, use this call:
REM
LET |i ne! =nyBBj Pri nt Page! . newLi ne()
line!.setPosition(new java.aw.Point(72,72))
i ne!.set EndPoi nt (new j ava. awt . Poi nt (144, 144))
REM
myBBj Pri nt Page! . add(|ine!)
This call creates a simple diagonal black line. Use the API calls to set various properties such as thickness.

The final step looks at everything as a whole using the call:

REM
myBBj Pri nt Doc! . previ ew()

continued...

2 BASIS International Advantage « 4th Quarter 2003 www.basis.com

Alternatively, use the following call to print the document:

REM
myBBj Pri nt Doc! . print()

This article described how to construct a BBjPrinter object and used it to gather information
about the printer. A BBjPrintDoc was used to create and preview a BBjPrintPage. This
article also explained how to use the BBjPrintPage to construct several different kinds of
BBjPrintObjects. Using this

system, BASIS created the [=1
Purchase Requisition shown in @ - 1 D sl 4 b
Figure 1 (see sample code). The
new BBjPrinter §ystem gives B ASIS Purchase Requisition
developers a variety of powerful
. L] [TP Ll

new tools to create professional N)

wirie e (e, e B emynjurl! By oot Siping & Fooe vy (0 remdee ramenay a Peechaor Shader
forms. Developers can now use s Postd Tt el barkspfor tpuschine, e prms el racemed
the uniform BBjPrintObject to Com Cund L Pupa 1oy

. . . Yandor HE il Ml

add images, lines, and text to their - P
forms. -z |

Poyewl CF ifs JRms Gl Cied Tl eiwe Erdborimd BubTaral §

Shigplag O Dwy [E0wy O%d ORCDP2bs Dive JPwws Figkghe .

Vvl al Dol Tax | =

v ToThL LE

Tlam g g eed b gy Appasral —

A v 4 ol svialog = 1500
AecmrAnp ey & filw Prpancear el

Figure 1. BASIS Purchase Requisition.

www.basis.com BASIS International Advantage « 4th Quarter 2003

