
Writing a Web Service in BBj
By David Wallwork

his article focuses on developing a Web service provider for BBj® programs.
See the Q1 2003 issue of the Advantage magazine for details about writing a
BBj Web services consumer. A Web service must follow certain standards so

that the deploying Web server knows how to serve it to the Web service consumer.
There are two steps required to offer a Web service. First, write the service and
second, deploy the service. This article explains how to write a Web service that
allows the service consumer to execute code written in BBj, offered by the Web
service. Because BBj runs in a Java runtime environment, BASIS implemented the Java
Web services paradigm.

A Simple BBj Web Service
The BBj 3.0 release includes the following two classes:

 com.basis.bbj.webservice.BBjWS
 com.basis.bbj.webservice.BBjWSImpl

These classes allow BBj to offer a Web service. Offering a Web service enables other
developers to write Web service consumers in other languages (VB, C++, BBj, .NET,
etc.) that can run any BBj program offered by the Web service. Although this
approach is certainly easy, the developer may want to do some additional work to

Control which BBj programs the consumer runs
Allow the consumer to pass information into the BBj programs
Allow the consumer to receive information back from the BBj programs

Controlling Which BBj Programs the Consumer May Invoke
Although the classes BBjWS.java and BBjWSImpl.java enable BBj to run as a Web
service, this is not the standard method for deploying a Web service. The Web service
developer should provide method signatures that are meaningful to the consumer of
their service, rather than an interface that offers to run a BBj program. Additionally,
developers should extend the classes BBjWS.java and BBjWSImpl.java, providing
descriptive methods for the developers of the consuming applications. These methods
can then invoke BBj code on behalf of the consumer. This way, the developer controls
which BBj programs the consumer can run.

For example, if the consumer of BBjAuction invokes the
BBjAuction.listAuctionItems() method, then the BBj program calls
auction_getItems.bbj. However, BBjAuction controls which BBj programs the
consumer application invokes. Now, the consumer of BBjAuction can only run a BBj
program through the interface offered by BBjAuction.

Data Exchange From the BBj Program's Perspective
The BBj program receives a limited amount of data from the Web service by inspecting
ARGV(). If the Web service requires more data than possible or reasonable via the
command line parameters, or if the Web service needs to obtain response data from
the program, then the BBj program should:

OPEN a bridge channel
READ from that channel as though it were a single keyed MKEYED file to obtain
data from the Web service

http://www.basis.com/index.html
http://www.basis.com/advantage/index.html
http://www.basis.com/advantage/mag-v7n2/index.html
http://www.basis.com/advantage/mag-v7n2/speed.html
http://www.basis.com/advantage/mag-v7n2/index.html
http://www.basis.com/advantage/mag-v7n2/deployment.html

WRITE to that channel as though it were a single keyed MKEYED file, or as
though it were a STRING file in order to return data to the Web service

After the BBj program ends, the Web service may access any data written to the
bridge channel.

Data Exchange From the Web Service's Perspective
The BBjWS interface exposes two methods:

public byte[] invokeBBjReturnBytes(String p_programName,
 String p_programParams,
 HashMap p_keyValues,
 int p_timeoutInSeconds) throws
RemoteException;
public HashMap invokeBBjReturnMap (String p_programName,
 String p_programParams,
 HashMap p_keyValues,
 int p_timeoutInSeconds)throws
RemoteException;

The syntax for p_programParams is the same as the syntax for the command line
parameters when invoking a BBj program from the command line. If
p_programParam ends with "..- argv1 argv2 argv3", then the BBj program has
access to argv1, argv2, and argv3 using the ARGV() function.

If p_keyValues is not null, then the BBj program accesses each key-value pair in
p_keyValues by reading the bridgeChannel. During its execution, if the BBj
program writes information to the bridge channel, then the Java code of the Web
service can access that information. If the BBj program writes to the bridge channel as
though it were a String File, then the Java code uses the method
invokeBBjReturnBytes() to retrieve the output of the BBj program. Alternatively,
if the BBj program writes to the bridge channel as though it were an MKEYED file,
then the Java code uses the method invokeBBjReturnMap() to retrieve the output.

Hello World Web Service
The following HelloWebService program:

Allows the consumer to run only one program
Accepts the user's name as input
Returns a greeting to the user

The developer needs to write two files: Hello.java and HelloImpl.java. Once
deployed, these files enable the developer to offer the Web service. In addition, the
developer needs to write Hello.bbj, which is the BBj program that our Web service
invokes.

Hello.java

import java.rmi.*;
public interface Hello extends java.rmi.Remote
{
 String sayHello(String name) throws RemoteException;
}

HelloImpl.java

import java.rmi*;
public class HelloImpl extends com.basis.bbj.webservice.BBjWSImpl implements
Hello
{
 String sayHello(String name)throws RemoteException
 {
 String params = name;
 byte answer[] = invokeBBjReturnBytes("Hello.bbj", params, null,
2000);
 return new String(answer);
 }
}

Hello.bbj

Bridge = unt
REM config file must contain a bridge alias for J0 see JavaBBjBridge docs
OPEN (bridge) "J0"

IF argc < 2
 Answer$ = "hello world"
ELSE
 Answer$ = "hello " + argv(1)
ENDIF

WRITE(bridge)answer$

RELEASE

With BASIS's Web service, the consumer no longer runs an arbitrary BBj program. The
only option for the consumer is to invoke the method sayHello(). The Web service
method HelloServiceImpl.sayHello() obtains its return value by invoking
Hello.bbj. Additionally, this Web service requires only a small amount of Java code
for implementation. Of course, it does not do much.

The next example is BBjAuction, which uses complex data types and multiple BBj
programs to offer more meaningful methods to the consumer of the Web service. The
following section returns to the BBjAuction, demonstrating how to pass more data
than is practical on the command line.

Passing More Data
The BBjAuction Web service allows the consumer to logon to the system to obtain a
listing of biddable items, bid on an item, and discover which item(s) the user won.
Below, we examine the method BBjAuctionImpl.listActiveItems(). Listed
below are the relevant portions of the code. See the complete code on the enclosed
CD.

Complete code of the method BBjAuctionImpl.java

public AuctionItem[] listActiveItems(String p_loginID)throws
java.rmi.RemoteException
{
 HashMap map = invokeBBjReturnMap("Auction_getItems.bbj",
p_loginID, null, 30);
 return convertToAuctionItems(map);
}

Relevant portions of Auction_getItems.bbj

0050 clientChannel = unt
0090 open (clientChannel)"J0"

0110 call "auction_util.bbj::initialize"

0130 call "auction_util.bbj::makeItemTemplate", item$

0150 index = 0
0160 findRecord(dataChannel,knum=2,key="0",err=finished)item$

0170 while 1
0210 call "auction_util.bbj::validateRecord", dataChannel,
bankChannel, item$
0220 closed = item.biddingClosed

0230 if !closed
0240 call "auction_util.bbj::templateToItem", item!, item$
0250 closed = item!.getBiddingClosed()
0260 value$ = techcon03.AuctionItem.toByteString(item!)
0270 writeRecord(clientChannel, key=str(index))value$
0280 index = index + 1
0290 endif
0300 readRecord(dataChannel, end=finished)item$
0310 wend

auction_getItems.bbj iterates through the data file, reading each record into the
templated string Item$. At line 240, the program uses Item$ to create a Java Object
of type techcon03.AuctionItem. At line 260, the code converts AuctionItem to
bytes and places it into the string value$. At line 270, the code writes a key-value pair
to the bridge channel.

auction_getItems.bbj continues until it writes all "open for bidding" items to the
bridge channel. Furthermore, BBjAuction.listActiveItems() receives a
HashMap as the return value of its call to
invokeBBjReturnMap("auction_getItems.bbj:", p_loginID, null, 30).

Recall that the key-value pairs written by auction_getItems.bbj originated from
strings. BBjAuction.listActiveItems() calls to
BBjAuctionImpl.convertToAuctionItems, which converted the map of strings
into an array of AuctionItems. The program then returns that list to the Web service
consumer.

Passing Complex Data Types Between Web Service and BBj Program
When a BBj program reads input from its bridge channel or writes to its bridge
channel, the program is only able to read or write bytes. Web service provides support
for much more complex data types. If the developer can convert (serialize) those data
types to bytes, the developer can pass them between the Web service and the BBj
program.

The following lines from auction_getItems.bbj illustrate this example:

0240 call "auction_util.bbj::templateToItem", item!, item$
0260 value$ = techcon03.AuctionItem.toByteString(item!)
0270 writeRecord(clientChannel, key=str(index))value$

Line 240 converts the templated string Item$ to an instance of the Java class
AuctionItem. Line 260 converts the AuctionItem to a string and line 270 writes
the string to the bridge channel. Consequently, BBjAuctionImpl calls
invokeBBjReturnMap() and does not need to understand templated strings. The
map that it receives contains serialized AuctionItems, rather than serialized
templated strings. BBjAuctionImpl deserializes these AuctionItems and uses
them as the return value for the methods invoked by the Web service consumer.

The conversion from a templated string to an AuctionItem uses the following code:

From auction_util.bbj

0330 templateToItem:
0340 ENTER item!, A$
0350 item! = new techcon03.AuctionItem()
0360 item!.setItemID(num(A.id$))
0370 item!.setDescription(A.description$)
0380 item!.setHighBid(A.highBid)
0390 item!.setHighBidder(A.bidder$)
0400 item!.setNumberBids(A.numBids)
0410 now = int(new java.util.Date().getTime()/60000)
0420 remaining = A.endTimeMinute - now

0500 item!.setMinutesRemaining(remaining)
0510 item!.createString()
0520 techcon03.AuctionItem.setBiddingClosed(item!,A.biddingClosed)
0530 exit

One additional conversion remains. The method invokeBBjReturnMap() returns a
Java HashMap. Each value in the HashMap contains bytes that are the serialization of
an AuctionItem. However, we want to return an array of AuctionItems to the
consumer of the Web service. Looking back at the code for
BBjAuctionImpl.listItems(), notice that it calls
BBjAuctionImpl.convertToAuctionItems(). See the code for this final
conversion below.

From techcon03.BBjAuctionImpl.java

private AuctionItem[] convertToAuctionItems(HashMap p_map)
{
 int size = p_map.size();
 AuctionItem ret[] = new AuctionItem[size];

 String key;
 String value;
 Iterator next = p_map.keySet().iterator();

 while(next.hasNext())
 for(int q+0;q{
 key = (String)next.next();
 value = (String)p_map.get(key);
 ret[q] = AuctionItem.fromByteString(value);
 }
 Arrays.sort(ret,getSorter());
 return ret;
}

This code iterates over the Map returned by invoking BBjReturnMap() and converts
each value to an AuctionItem by calling AuctionItem.fromByteString().
Furthermore, this code demonstrates how to exchange Java Objects between a BBj
program and the Web service. The only requirement is knowing how to change that
Java Object to bytes and back again.

Increased Security and Functionality
BBj 3.x provides the classes necessary for the immediate deployment of BBj programs
as a Web service. By writing a minimal amount of Java code, a developer can write a
Web service that is more secure and functional than the provided classes. Because BBj
can create and manipulate Java objects, BBj programs and Web services can exchange
complex data structures giving BBj programmers the ability to write very sophisticated
BBj powered Web service providers. For more information about BBj and Web services,
see http://www.basis.com/advantage/mag-v7n1/webservices.html .

Click HERE for the "Writing a Web Service in BBj" source code.

http://www.basis.com/advantage/mag-v7n2/deployment.html
http://www.basis.com/advantage/mag-v7n2/index.html
http://www.basis.com/advantage/mag-v7n2/speed.html
http://www.basis.com/advantage/mag-v7n1/webservices.html
http://public.basis.com/webservice.zip

	basis.com
	BASIS International, Ltd. - Writing a Web Service in BBj

