Connection Pooling — Part 1

ODBC/JCBC Pooling

By Jeff Ash

magine you want to interview three different
people, asking each person questions as they
occur to you. One approach would be to call
Person A (dial the number, establish the
connection, greet your interviewee, ask your question,
say goodbye, and hang up), then repeat the process for
Person B, and finally for Person C. Suddenly, you
remember another question you wanted to ask Person
B. Each time you want to ask a new question, you must
repeat the whole process of re-establishing a connection
— even if the question itself only takes a few seconds to
ask and receive an answer.

A more efficient approach would be to phone Person A
and place the call on hold, and then repeat this process
for Person B and Person C. Every time you want to ask
a question, just select Line 1, Line 2, or Line 3 on your
phone, ask the question, and get an immediate answer.
This approach is much faster, especially if you ask
several questions of each of the three people, because
you only incurred the overhead of calling and
establishing a connection once for each person. (We
are, of course, assuming that you are a very important
person, and that these people have nothing better to do
than sit at their phones waiting for you to ask them
questions!)

This article discusses the pooling options built into the
BBj® ODBC and JDBC drivers, how to use them, and
some real world examples.

How Pooling Works

Pooling is similar to that theoretical multiline phone
conversation, except with computers that do not mind
hanging around all day in case you want to ask a
question. In the context of the ODBC and JDBC
drivers, a pool is simply a group of open connections
that are available for immediate use. While it is possible
for an application to manage a connection pool, it can
be complicated and, since pooling is useful to many
applications, it makes sense to embed it directly in the
drivers. The BASIS ODBC/JDBC drivers have

supported connection pooling since BBj 4.01. The
connection pool is completely transparent to the
application. That is to say that the application developer
does not need to do anything special to use pooling; the
driver manages everything internally. As a result,
applications that do not already use connection pooling
can benefit from it by simply adjusting their connection
strings or data source definitions.

The connection pool always starts out empty, that is, it
contains no open connections. When an application
requests a connection from the driver, the driver first
looks in its pool to see if there are any available
connections. If there is a connection available that
matches the one requested, the pool returns that
connection instead of opening a new one. If there are

no connections available that match the request, the
driver opens a new connection and hands it off to the
application. When the application “closes” the
connection, the ODBC/JDBC driver actually keeps the
connection open and checks it into the pool, just in case
the application needs it again in the future. The
connection remains in the pool for some predetermined
time (the BASIS ODBC/JDBC default is 10 seconds), or
until the application checks it back out or the application
terminates.

Example

Suppose an application needs to open a connection,
execute a statement, and then immediately close the
connection; and the application does this a large
number of times in succession. If the application does
not enable pooling, it would have to open a
completely new connection each time. While this
might not be a problem if the application does this
only a few times, it can be a problem if it needs to do
this several hundred or several thousand times in a
row. With pooling enabled, the connection is not
closed each time but is simply set aside for later use.
Then, when the application needs a new connection, it
reuses the earlier one. If the application performs this
operation several thousand times, it keeps getting a
handle to the existing connection instead of creating
an entirely new connection each time. The result is
that performance is 2-3 times faster when using
pooling.

How to Configure Pooling

By default, the JDBC and ODBC drivers automatically
support pooling. The default amount of time that
connections remain in the pool is 10 seconds.

ODBC Driver

To configure the pooling settings for an ODBC data

source, open the DSN configuration dialogue for the

desired data source through the ODBC administrator.
continued...

)

diysieupey

-
o
=

w
[
]

(=]
]
—
3
=3
@
=

-
=
@
=3
]
-

(uoueusgu!wpv washg 51001 Juawdojans(Juswabeue|y sseqereq

Jeff Ash
Software Engineer

www.basis.com

BASIS International Advantage ® Number 1« Volume 89 « 2005 1

)

Partnership

Locate the setting called “Connections Remain in Pool.” Set this

value to the number of seconds that connections should remain in

the pool. To disable pooling completely, set this value to zero. If

the application uses a connection string instead of a DSN name,

the name of the property to set is “POOLREMAIN.” Here is a

sample connection string setting the pooling option to 60

connections:

ODBC;Driver={BBj ODBC Driver}; Server=LOCALHOST; Port=2001; Database=ChileCompany; POOLREMAIN=60

JDBC Driver

To configure the pooling settings for a JDBC connection, ad

the “POOLREMAIN” property to the JDBC connection string.

For example,

jdbc:basis: LOCALHOST?DATABASE=ChileCompany&POOLREMAIN=60

—
@
a-—
@
=
o
—
]
-
[=
=
@
=
]
=
=
=
C]
-

Summary

Since the BASIS data access drivers manage the pooling
automatically, it is not necessary for application developers to
write their own pooling mechanism. This can save the developer a
lot of development time as well as maintenance time. For those
applications that perform large number of operations involving
opening and closing connections, pooling can have an
enormously positive impact on the performance of the
application. ~®asts

Database Management

Development Tools

L\System Administration

2 BASIS International Advantage * Number 1 Volume 9 ¢« 2005 www.basis.com

