

Getting Started with the Dashboard Utility

By Nick Decker

The Dashboard Utility Framework Overview
Before we start digging into the various widget types and extracting data, it is a good

idea to take a step back and familiarize ourselves with the Dashboard Utility as an

object-oriented​ ​framework​. Without going into too many of the gory details, the

Dashboard Utility​ is a set of BBj​®​ programs that use ​BBj Custom Objects​ to build

complex objects via ​classes​. The final bit of jargon is that the Dashboard Utility adheres

to the ​Model–View–Controller​ (MVC) architectural pattern, which is useful to keep in

mind because most of the time we will be dealing with BBj objects that represent a

particular model when writing dashboard programs. Various objects, like the ​Dashboard

and ​DashboardWidget​, are models. ​Wikipedia​ defines models as the application's

dynamic data structure, independent of the user interface. The models directly manage

the data, logic, and rules of the application and objects without exposing the underlying

controls or details. In future articles, we will dig deeper into the differences between the

model and view objects and how your program interacts with them. If all these terms

are new to you, take comfort that they make life a lot simpler for the Business BASIC

programmer by reducing complexity and providing high-level synergy with dashboard

objects. We will cover some of the theory and background of BBj Custom Objects in this

article, but you will not need to fully understand all the underlying concepts, because the

resultant BBj program will be small and easy to read. This article focuses on creating a

https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Software_framework
https://documentation.basis.com/BASISHelp/WebHelp/bbutil2/dashboard.htm
https://www.basis.com/sites/basis.com/advantage/mag-v10n1/primer.html
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://devserver.basis.com/BASISHelp/WebHelp/utils/Dashboard/Dashboard.html
http://devserver.basis.com/BASISHelp/WebHelp/utils/Dashboard/DashboardWidget.html
https://en.wikipedia.org/wiki/Main_Page

fully-functional dashboard program in a minimal amount of code, with the Dashboard

Utility taking care of the low-level details and code for us.

The Dashboard Program Flowchart
To get a better idea of what our dashboard program will look like, including the main

steps and data objects that we will work with, refer to the Dashboard Design Process

flowchart in ​Figure 1​.

Figure 1. ​A flowchart of our dashboard program’s design process

This will be the standard flow of most dashboard programs, although it is possible to

bypass the dashboard framework and create independent widgets such as pie charts and

report widgets that you can embed inside an existing BBj application’s window. That

process is different, and a future article will detail that type of widget development.

Creating a Dashboard Class Instance Via a Constructor
Our program begins by creating a Dashboard object. This is where we will first come in

contact with the custom classes, as we instantiate (or create) a new Dashboard object

as an ​instance​ of the Dashboard class. In Object Oriented programming, sometimes

referred to as OOP, you accomplish this via the Dashboard class’s ​constructor​. It is
worthwhile to mention that BASIS programmatically documents all the Dashboard

Utility’s classes and their methods via the ​BBjToJavadoc​ utility. This utility generates the

documentation, which is then published along with the rest of the ​BASIS Product Suite

Help​. The end result is that the Dashboard object is fully documented in Javadoc format

here​, and ​Figure 2​ shows an excerpt of one of those pages that we will use when

writing our first line of code.

https://en.wikipedia.org/wiki/Instance_(computer_science)
https://en.wikipedia.org/wiki/Constructor_(object-oriented_programming)
https://documentation.basis.com/BASISHelp/WebHelp/bbutil/bbjtojavadoc.htm
https://documentation.basis.com/BASISHelp/WebHelp/index.htm
https://documentation.basis.com/BASISHelp/WebHelp/index.htm
https://documentation.basis.com/BASISHelp/WebHelp/utils/Dashboard/Dashboard.html

Figure 2. ​An excerpt of the Dashboard object’s Javadoc documentation page

This page lists everything about the Dashboard object, including ​fields​ (a variable

specific to the class), constructors, and the available ​methods​ that provide us with ways

to interact with the object after we instantiate it.

Instantiating the Dashboard Object
Earlier we said that the OOP jargon may sound daunting, but that it would end up

making our application programming job a lot easier. Creating a Dashboard object

serves as a good case in point for this claim. The Javadocs state that to construct a new

Dashboard object, we must use the following constructor:

$Yk`ZgYj\​(BBjString p_name$, BBjString p_title$)

Given this, our BBj code (with comments) to create our Dashboard object looks like this:

j]e #j]Yl] l`] \Yk`ZgYj\ gZb][l
\Yk`ZgYj\É​ đ ​f]o​ $Yk`ZgYj\Ý​íeq&ajkl$"í​Ä​í-q &ajkl $Yk`ZgYj\í​Þ

The ​BBj Custom Objects Tutorial​ provides details about custom objects, constructors,

and object variables, and mentions that the exclamation mark (​É​) following a variable

indicates that it is an object variable. This is similar to how string variables in BBx have

a ​ò​ suffix and integer variables have a ​Č​ suffix. So our line of BBj code constructs a

Dashboard object, passing in string values for the dashboard’s name and title. BBj

assigns the resultant instance to our ​\Yk`ZgYj\É​ object variable, which we will use in

upcoming code. While we have not yet displayed anything on the computer screen,

when BBj runs this one line of code it initiates the execution of a cascade of Dashboard

https://en.wikipedia.org/wiki/Field_(computer_science)
https://en.wikipedia.org/wiki/Method_(computer_programming)
https://drive.google.com/file/d/0ByERNUtEl6-fM2ExZmRkMWMtYjU4OC00NGVjLWI0NTYtMWI1NzkxNDIyYjI4/view

Utility code—code that provides a lot of functionality which we will soon cover, but more

importantly, code that we did not have to write!

If we were to cheat a bit by jumping ahead and displaying the visual representation of

our ​\Yk`ZgYj\É​ object, we would see something like the window shown in ​Figure 3​.

Figure 3. ​Displaying our ​\Yk`ZgYj\É​ object in a DashboardWindow

Now that we have a concrete Dashboard object, we can call its methods to perform

specific tasks. The next step in our flowchart says that we must create a

DashboardCategory, which we will do in the next section by calling a method on our new

\Yk`ZgYj\É​ object variable.

Adding a DashboardCategory to the Dashboard Object
The Dashboard Utility renders a DashboardCategory as a tab inside the dashboard that

serves as a container for widgets. It is possible to create many categories, or tabs filled

with widgets, in the same dashboard. Generally speaking, categories exist to group

widgets that report on similar data. So it is possible to create one category with widgets

that focus on sales statistics, and another that deals with accounting metrics. The

categories that you create and how you group the widgets into those categories is

entirely up to you—it depends on the data you want to present to the end user and how

that data is best grouped.

Instantiating the DashboardCategory Object
The ​DashboardCategory’s Javadoc page​ shows that the object does have a constructor,

but that is a testament to the Dashboard Utility’s flexibility in that you can create

standalone versions of many of the classes. Because we already have our ​\Yk`ZgYj\É
object we can make use of its ​Y\\$Yk`ZgYj\#Yl]_gjqÝÞ​ method as a shortcut to create a

category and add it to our existing dashboard in a single step. ​Figure 4​ is an excerpt

https://documentation.basis.com/BASISHelp/WebHelp/utils/Dashboard/DashboardCategory.html

from the Dashboard object’s Javadoc page and shows the method that we will use to do

this.

Figure 4. ​The Dashboard’s ​Y\\$Yk`ZgYj\#Yl]_gjqÝÞ​ method documentation

Given that method description, our next line of BBj code looks like this:

j]e #j]Yl] l`] \Yk`ZgYj\ [Yl]_gjq lg `gd\ gmj oa_]lk
[Yl]_gjqÉ​ đ ​\Yk`ZgYj\É​ÇY\\$Yk`ZgYj\#Yl]_gjqÝ​íkYd]kí​Ä ​í3Yd]k -]lja[kí​Þ

That line of code executes the ​Y\\$Yk`ZgYj\#Yl]_gjqÝÞ​ method on our ​\Yk`ZgYj\É​ object

and provides string values for the category’s unique name and the title which displays

on the tab. Calling that method gives us a new DashboardCategory object variable called

[Yl]_gjqÉ​. Here again, we have created a model of a complex custom class and the

Dashboard Utility is responsible for creating the associated view, or user interface, for

the category. That is another benefit of the MVC paradigm, as our program only deals

with a simplified model of the category and the utility goes through the effort of creating

the actual tab control and managing selection events and associated child windows.

Jumping ahead once more and displaying what we have created so far results in the

window shown in ​Figure 5​. The difference between ​Figure 5​ and the previous

screenshot in ​Figure 3​ is that our dashboard program now displays an empty “Sales

Metrics” tab.

Figure 5. ​Displaying our “Sales Metrics” ​[Yl]_gjqÉ​ object as a tab in the dashboard

Adding Widgets to the DashboardCategory
The next step in our flowchart covers creating widgets and adding them to the

DashboardCategory. Earlier we found that we could create a standalone

DashboardCategory, but it was easier to call an add method on our ​\Yk`ZgYj\É​ object.

That is also the case for widgets and our new ​[Yl]_gjqÉ​ object. Instead of creating

standalone widgets, we will take a shortcut and execute a single method on our

[Yl]_gjqÉ​ object to both create the widget and add it to the category. Looking at the

DashboardCategory’s Javadoc page​, there are about 50 methods that we can execute to

add different types of widgets to our category. That is a lot of different ways to add

widgets, and it is due to two factors:

1. A large number of available widgets such as various types of charts, grids, reports,

images, and HTML views.

2. Several different ways to fill the widget with data, such as SQL result sets,

BBjRecordSets​, and methods like ​k]l$YlY3]l6Ydm]ÝÞ​.

Overloaded Methods
Because we would like to show our sales data for each salesperson as a slice in a pie

chart, we will use one of the DashboardCategory’s ​Y\\0a]#`Yjl$Yk`ZgYj\7a_]lÝÞ
methods. This is the place where we will have to provide more code, though, as widgets

are flexible enough to allow you to control many aspects of their appearance. In the

same way that there is no single BBjTopLevelWindow with a fixed size and position that

satisfies every application window need, widgets offer a variety of customization options

provided at the time of their creation. Taking that comparison even further, let’s look at

Figure 6​ which shows the documentation for ​BBjSysGui​ methods that create a

BBjTopLevelWindow​.

Figure 6. ​The BBjSysGui’s methods to create a BBjTopLevelWindow with parameters

It is common for classes to offer many constructors or methods that do the same task,

but with a different set of parameters. In OOP parlance, this is known as method

overloading. This refers to differentiating the method based on the parameters of the

method. As a case in point, there are five distinct versions of the ​Y\\7af\goÝÞ​ method

shown in ​Figure 6​. Because they take different parameters, some methods are better

suited for particular situations. Some offer very few parameters, which usually indicates

that the return object will end up with default values. Other methods give the

programmer the ability to fine-tune the window’s appearance and behavior at creation

time by including parameters for window flags and event masks.

Likewise, when we look at the DashboardCategory’s methods we find that there are

several different ways of adding a pie chart widget. ​Figure 7​ shows an excerpt of the

available methods that add a pie chart to the category.

Figure 7. ​Two of the five methods that add a PieChart to a DashboardCategory

Similar to adding a BBjTopLevelWindow to a BBjSysGui object, we can choose between

five different methods to add a pie chart to our category. The two methods shown in

Figure 7​ use many of the same parameters that are common to all widgets such as a

name, title, etc. The difference between the two comes at the end of the parameter list.

The top method uses a provided BBjRecordSet to fill the pie chart with data whereas the

bottom method uses a JDBC connection and SQL query. In the latter case, the

programmer supplies a couple of strings and the Dashboard Utility takes care of making

a connection to the database, executing the query, filling a ​result set​, and populating the

pie chart with the resultant data. This is a perfect example of what we mean when we

say that developers interact with the dashboard objects at a high level and the utility

manages the low-level details and code.

Instantiating the DashboardWidget Object
Because the add method takes several parameters, our code first sets those parameter

values in named variables to make the code easier to read and maintain, as shown in

Figure 8​.

Figure 8. ​The code that defines the variables used to create the pie chart widget

The variables start with ​fYe]ò​, which is a unique name for the widget in the category.

This will never be visible to the end user but the utility uses it to keep track of the

widgets. The name may show up later in a log file if an error occurs in the widget, so it’s

helpful to provide a name that is meaningful and differentiates this widget from the

others. The last two variables, ​[gff][l3ljaf_ò​ and ​kidò​, provide the Dashboard Utility

with all the material it needs to fill the pie chart with information from our ChileCompany

database. Now that we have set all the parameters, we can add the pie chart

DashboardWidget to our category with the code shown in ​Figure 9​.

Figure 9. ​The line of code that creates the pie chart widget and adds it to the category

It is a rather long line of code, so to improve legibility we have used line continuation

characters to extend it over multiple lines. Jumping ahead once more, ​Figure 10​ shows

what we have so far after adding our pie chart widget to the dashboard.

Figure 10.​ Displaying our pie chart widget in the dashboard

Displaying the Dashboard
As is evident by our sneak peek in ​Figure 10​, we have completed most of the code

necessary to create a dashboard application. Even though our program is short, there is

