
B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 0 • 2 0 0 6www.basis.com 1

 Partnership Language/Interpreter D
atabase M

anagem
ent D

evelopm
ent Tools System

 Adm
inistration

E

continued...

Applying Custom Objects to Existing Code
By Brian Hipple

Figure 1. Classes that represent the base for a BBj GUI application

xperienced BBx® developers, as well as developers with a background in object-oriented design and object-
oriented programming, may be a little skeptical when they hear that the latest generation of the BBx language
is now ‘fully object-oriented’ and therefore may have many questions about BBj® custom objects.

This article addresses such questions as “Do BBj custom objects support inheritance, interfaces, encapsulation,
polymorphism, access modifiers, and scoping as other object-oriented (OO) languages like Java, C++, or .NET do?”
“Is the syntax more comparable to traditional BBx or to these other OO languages?” “What are the benefits of
incorporating custom objects?” “What is involved in moving from a procedural coding style to an object oriented
style?” And, last of all, “How would a developer integrate custom objects to an existing application or system?”

Object-Oriented Functionality Support
BBj does indeed support traditional OO functionality from inheritance to scoping, giving the application developer the
most powerful and versatile development infrastructure.

Picking up the custom object syntax is quite easy for both seasoned BBx developers and experienced OO programmers,
as it is a nice blend of BBx and OO type code. Similar to how DEF FN and FNEND mark the beginning and ending
of a function in BBx, the method and methodend verbs mark the beginning and ending of a method. Traditional
OO statements such as class, extends, interface, implements; and private, protected, and public access
modifiers help make the move from other OO languages into BBx an easy transition.

Benefits of Custom Objects
Benefits of incorporating custom objects into an application or system include decreased development time and
increased development resources, readability, maintainability, and reusability. Since many colleges and universities
teach OO design and OO programming, this is a new widespread opportunity for the BASIS community to tap into the
wealth of generally available programming resources. Development time decreases significantly with the new ability to
complete code in the BASIS IDE. Code completion provides developers with the ability to view and select methods or
objects from a pop-up list. Developers no longer need to open and inspect a source file to determine what functions or
routines to call – they just simply select the desired object or method from a popup list. Readability and
maintainability of code increases as all related data and functions used to modify this data are contained in custom
objects as human readable attributes and methods.

Reusability of code is the major benefit of
using custom objects. Developers can write
and debug functionality once and reuse it
repeatedly via inheritance, encapsulation, and
interfaces. For example, a BBj application
that uses custom objects will need access to
the BBjAPI and should provide the ability to
process application events. Creating a BBj
Graphical User Interface (GUI) application
using custom objects requires access to the
BBjAPI as well as access to the BBj SysGui
API and the application resource. The classes
that represent this functionality appear in
Figure 1.

The BBjApp class has as an attribute, a
BBjAPI object (API!), which provides access
to the BBj API and the method
processEvents that handles user events for
the application. The BBjGUIApp class
extends the BBjApp class to get access to the
BBj API and process events functionality, but
also has as attributes such as the channel that
the sysgui is opened on (SysGuiChan),
access to the SysGui API (SysGui!), and the
application resource (Resource$). Once the
developer writes and debugs these classes,
other classes can use these classes and benefit
from this proven functionality.

Brian Hipple
QA Test Engineer
Supervisor

http://www.basis.com/onlinedocs/documentation/index.htm#<id=2506
http://www.basis.com/onlinedocs/documentation/index.htm#<id=1062
http://www.basis.com/onlinedocs/documentation/index.htm#<id=2507
http://www.basis.com/onlinedocs/documentation/index.htm#<id=213
http://www.basis-documentation.com/ide2/ide_features_basis.htm

2 www.basis.com

Sy
st

em
 A

dm
in

is
tra

tio
n

 D
ev

el
op

m
en

t
To

ol
s

D

at
ab

as
e

M
an

ag
em

en
t

La
ng

ua
ge

/In
te

rp
re

te
r

 P

ar
tn

er
sh

ip

B A S I S I n t e r n a t i o n a l A d v a n t a g e • N u m b e r 1 • V o l u m e 1 0 • 2 0 0 6

Figure 2. Uniform Modeling Language (UML) object diagram illustrates design class attributes

For more information, read the articles A Primer for Using BBj Custom Objects on page 11 in this issue
and the e-article Freedom of Choice: Using Object Code Completion in the IDE located online at
www.basis.com/advantage/mag-v10n1/codecompletion.html

Procedural to Object-Oriented
Migrating from a procedural coding style to an OO style involves approaching application development and
implementation with a different mindset. Normally, in a procedural application design and implementation, action is
performed in a top-down fashion and then refined by adding more details. The task breaks down major functionality into
parts comprised of a set of ordered actions. There is usually no relationship, or a very loose one at best, between data and
the manipulation of the data. By contrast, in an OO application design and its implementation, action takes place in
bottom-up fashion, where individual parts of the task are accomplished in detail and parts are then linked together
to form the application. In addition, in OO programming a class is comprised of data called attributes; and behaviors,
also referred to as methods. Being in the same class provides the strongest relationship between data and the
manipulation of the data. To understand the references in this article to classes and objects more conceptually,
think of “class” as a cookie cutter and the “object” as a cookie.

Migration to Custom Objects
As mentioned earlier, to incorporate custom objects into an existing application, start from the bottom-up. Identify
what data the application uses – not just the data on disk, but data structures and groups of related information used
in the application. Uniform Modeling Language (UML) object diagrams will now represent custom objects that

encompass the application or system. These diagrams are a real help in designing and documenting
the application as they describe the custom objects attributes and functionality as well as showing
the relationships between the objects. Figure 2 illustrates design classes with UML diagrams that
contain these attributes.

If an application accesses customer information that includes the customer’s name, address, phone
number, etc., then this data can be added as attributes of a class (Customer). Next, determine what
action to perform on this data. To be able to set and get this customer information, this class
should include methods called accessors that perform these functions (i.e. setCustomerName(),
getCustomerName()). Custom objects provide default accessors for each class attribute. If the
custom object has a CustomerName attribute, the class will get, by default, a setCustomerName
and getCustomerName accessors with the same access as the attribute.

The next step is to determine what access is required for these class attributes. Is this data only
necessary within this class, a sub-class, or is this information for all? This answer determines the
type of access for these attributes and methods: private, protected, or public. Aggregation will be
necessary if there will be multiple instances of your data. In this case, there will be more than one
customer and so there is a need for a class to manage this information. This class (CustomerMgr)
will contain all customers in some sort of a collection and provide access to remove, retrieve, and
edit a particular customer. Keep in mind that when performing OOD, the developer should
separate or loosely couple classes used for application data, user interface (UI), and communication.
This is important when you want to replace or manipulate one of these areas without affecting the

other. To illustrate this, our sample has a
class (CustomerMgrUI) that implements
the necessary UI functionality for the user
to add/remove/edit customer information.
However, this class does not directly
manipulate the data that contains customer
information - it contains the class
(CustomerMgr) which manipulates the
data. Therefore, changing the UI from a
CUI to a GUI only changes the UI class
(CustomerMgrUI) and does not affect
the data or access to the data.

Summary
Remember, you do not have to move your whole system to custom objects all at once, you can migrate a piece at a
time. BASIS strongly encourages the use of custom objects for your next development project. Developers new to OOD
and OOP can find a wealth of books and articles to help in this endeavor. Use UML object diagrams and plan to spend at
least 30% of your development time in design. To rework existing code or write new code, take a little time to figure out
what your data is, determine how the data is manipulated, and what access is necessary to the data. Following these steps
will make your next BBx project using custom objects a successful one!

http://www.basis.com/advantage/mag-v10n1/codecompletion.html

