
www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 3 • A u t u m n 2 0 0 9

in BBj®, with their ability to access record
data with traditional READ statements,
can use the same speedy routines as
the legacy stand-alone applications to
retrieve sought-after data, without using
SQL or requiring a database overhaul
and yet, deliver that data in structures
acceptable to third party tools using the
SQL language.

SPROCs – a CALL by
Another Name
Business BASIC programmers have been
using BBx’s CALL statement for decades
to access commonly used code and
libraries of routines. In order to interface
with the CALLed program effectively, a
BBx program passes variables along in
the CALL statement and the CALLed
program uses an ENTER statement to
retrieve these values. The following line
of code should look familiar to most BBx
programmers:

CALL "CUSTINFO", CUSTNUM, COMPANY$

In the same way that the CALL verb
allows BBx programs to invoke another
program, passing in variables and
receiving information back, a SPROC
does the same for client access to a
database. In fact, even though we are
now using SQL to talk to the database,
the syntax is remarkably similar:

CALL CUSTINFO(CUSTNUM,'COMPANY')

he SQL language got its start
almost forty years ago and is
now the standard language
for querying, modifying, and

managing a relational database.
Developers have used SQL for years
to manipulate their data, generate
reports, and otherwise interact with their
BASIS Databases. Despite the power
of SQL, however, their data may not
be structured for efficient SQL access,
having been designed for the fast direct
record access offered by the BBx®
language syntax. The ability to easily
lock data files, extract records, and do
keyed reads are more appropriate for
these data structures and are second
nature to a BBx programmer. The SQL-
counterparts are sometimes more
complex, difficult to construct, or may
not be available in legacy file formats.
BASIS recognized this and took steps
to aid developers in their quest to write
BBx-driven database stored procedures –
by providing an easy-to-use code

BASIS Generates
SPROC Template Code
Now anyone can
write a SPROC!

> >

 T

DBMS

34

By Nick Decker
Engineering Supervisor

generator that writes customized
template code based on a file’s data
layout.

Stored Procedure Background
Stored procedures, or SPROCs for
short, have become popular by helping
developers open up their database to
third party client access. It is possible to
move all of the complex processing logic
that previously existed in the primary
application into a SPROC. Doing so
allows a variety of new clients to access
the database while retaining all of the
requisite business logic and processing
that the application formerly provided.
Now that the SPROC is the central
location for the business logic, disparate
clients can access the database through
the SPROC and take advantage of
several years’ worth of accumulated
processing expertise without having to
replicate that functionality in every client
application.

Another strong case for using SPROCs
is their ability to bypass the previous
requirement that all SQL access to the
database must be on normalized files
to avoid an unbearable performance
penalty. Many customers were initially
pleased with SQL access, only to be
disappointed later when queries to non-
optimized and non-normalized legacy
data files performed poorly. SPROCs

http://www.basis.com/onlinedocs/documentation/index.htm#<id=2042
http://www.basis.com/onlinedocs/documentation/index.htm#<id=1022
http://www.basis.com/onlinedocs/documentation/index.htm#<id=1084

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 3 • A u t u m n 2 0 0 9 www.basis.com

the SPROC, it only specified that the
new procedure would return a result set
of data back to the client. At that point
in time, it was not critical to define what
that result set would look like – only that
the SPROC would use it to return data
to the client. This makes sense, as a
SPROC can be very flexible, returning
different result sets back depending on
which type of input parameters the client
supplied. But now that the developer
is getting down to the nitty-gritty of the
SPROC code itself, it is time to figure
out exactly what the return result set
should look like.

For our example, the invoker of the
SPROC needs the shipping address
for the customer, so the data will be
a subset of the appropriate record in
the ChileCompany’s CUSTOMER data

DBMS

35

Not only does the syntax look strikingly
similar, but developers use SPROCs
in large part for the same reasons –
launching a program that provides a
commonly used service for several
applications. You can also pass data into
a SPROC in much the same way that
you specify variables to pass to a public
program. SPROCs are very flexible as
they provide the traditional input and
output variables along with advanced
return types such as return codes and
full-blown result sets, similar to a grid full
of data.

Creating a new SPROC
So now that everyone is sold on SPROCs
and are reassured that the code is
familiar, how does one go about creating
one of these "called" routines/programs?

The first step is to determine what sort
of database functionality the SPROC will
provide, followed by the desired input
and output data. In our example, we
use the ChileCompany demo database
and create a SPROC that returns a
customer’s billing/shipping address
given their customer number.

Next, launch Enterprise Manager (EM)
or load the EM module from within the
BASIS IDE for a truly all-in-one experience.
Then select the ChileCompany database
entry from the list of databases in the
bottom left panel. Click on the Procedures
tab in the right-hand information pane
for the ChileCompany, then the Plus
button to add a new SPROC.
A new window, as shown in Figure 1,
appears in which you can enter all
of the necessary information and full
description of the new SPROC.

In this example, the SPROC’s name is
CUSTOMER_ADDRESS. The program
file CUSTOMER_ADDRESS.prc, located in
the Data Dictionary directory, runs when
a client calls the SPROC. Selecting the
"Has Result Set" checkbox indicates
that it returns a result set back to the
caller. The result set is a handy way to
return data back to the client, especially
if the SPROC might return multiple rows
of data. In our example, the SPROC
only returns a single row – the address
for the specified customer – but the
result set makes it easy to return several
rows and columns worth of data.

Lastly, we have defined a single
parameter called CUST_NUM that is a
CHAR type with a direction of IN. This

Figure 1. Adding a new stored procedure

means that the client must
provide a string containing
the customer number when
calling the SPROC to specify
which customer address they
require.

EM Generates SPROC
Code Template
The next step is where the
magic happens. By clicking
the [Build Source Template]
button, the Enterprise
Manager writes most of the
SPROC code needed to make the
program viable. Clicking the button
results in the dialog box shown in
Figure 2 that warns it will overwrite
the designated program file
(DICTIONARY)CUSTOMER_ADDRESS.prc
with a newly-generated template. If
we had previously written the code for
the SPROC and pushed the button
by mistake, selecting [Cancel] would
abort the process. Since we have not
written the SPROC program, selecting
[OK] causes EM to write the SPROC
program file.

Customizing the SPROC’s
Output
Enterprise Manager gives us the
opportunity to specify a string template
to describe the SPROC’s return result
set. When the generator first created

Figure 2. EM’s warning when creating a new template SPROC program

> >

http://www.basis.com/onlinedocs/documentation/index.htm#<id=19

www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 3 • A u t u m n 2 0 0 9

file. To access the CUSTOMER table’s
string template, click on the Tables tab
in EM then double-click the CUSTOMER
entry in the table list. The resultant
window brings up the properties for the
CUSTOMER table and offers a button
called [String Template] as shown in
Figure 3. Click the button to show the
string template for the data file in a text
box and copy the address portion into
the clipboard.

Equipped with the desired section of the
customer table’s string template, paste
it into EM’s dialog to define the columns
that comprise a record in the return
result set (see Figure 4).

After clicking [OK], EM writes out the
template SPROC code. Now save the
fully defined SPROC to test it. Notice
that the list of stored procedures in EM
now contains the new SPROC at the top
of the list as shown in Figure 5.

Testing the SPROC
Because EM wrote a full-blown program
for the backend of the SPROC, it
is possible to try it out right away.
Obviously, it will not work exactly as
needed, since EM cannot read minds
and the developer did not tell it from
which file to get the data. However, it did
create a fully functioning program that
will return sample data when CALLed
by a client. To take it out for a test
drive, execute an SQL CALL statement
in the SQL tab. EM saves time here
again, as the SPROC listing (as
shown previously in Figure 5) also
contains sample SQL code to invoke
the SPROC. The simplest way to
proceed is to copy the sample SQL
code from the SPROC line, click
over to the SQL tab, and then paste
it into the SQL Statement box (see
Figure 6).

Executing the SQL statement
causes the BASIS DBMS to run
the BBx program that defines the
SPROC, returning a result set with
the fields specified in the string
template. After verifying that the new
SPROC works without error, a fully
functional SPROC is just around
the corner, having already created a
new SPROC, asked EM to write out
a functional template program,
and ensured that the SPROC
actually works. The final step is > >

DBMS

Figure 3. Accessing a data file’s string template

Figure 4. Specifying the string template for the result set

Figure 5. The newly-defined SPROC in the list for the ChileCompany

36

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 3 • A u t u m n 2 0 0 9 www.basis.com

to modify the EM-generated template
program to return the right data – the
actual data from the ChileCompany
CUSTOMER data file.

Modifying the SPROC Program
Open up the CUSTOMER_ADDRESS.prc
file in the BASIS IDE and notice that
the EM-generated program file already
does most of the work. For example,
the program takes care of getting
the customer number that the client
specified and loads it into a variable
named CUST_NUM$. It also creates
a memory record set, fills it with the
appropriate address data, and sends
it back to the client. The only change
needed, is to remove the section of
code that fills the record set with sample
data and replace it with code that fills it
with the real data. That job is easy too,
as EM already wrote most of that code
based on the supplied string template.
In fact, just make a couple of small
changes and the SPROC will retrieve
data from the designated CUSTOMER
data file.

Begin by removing the section of code
that fills the record set with sample data,
as shown in Figure 7.

Notice that the code filled every field in
the record set with the string CHARVAL.
This should look familiar as it is the
same return result set for every column
that occurred on the first test of the
SPROC from the EM.

The next step is to enable the template
code that fills the record set with the
correct data from the CUSTOMER
data file. After uncommenting the pre-
generated code block, it looks like
Figure 8.

The code is very close to what is
ultimately desired, but it still needs a
few changes. For starters, specify the
path to the actual CUSTOMER data file
instead of the MY_FILE placeholder in
the code. Next, modify the rec$ template
to match the full string template for the
CUSTOMER file (right now it matches
the return result set template which is
just a subset of the full record template).
Lastly, modify the READ RECORD
routine. The routine is designed to
read all the way through a data file,
returning every record. The goal with
the customer address is different, > >

DBMS

37

Figure 6. Testing the newly created SPROC

Figure 7. Filling the record set with sample data

Figure 8. The template code that fills the record set

www.basis.comB A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 3 • A u t u m n 2 0 0 9

a report because the SPROCs are self-
explanatory. When report authors load
up a tool like iReport, they have access
to the right data without needing intimate
knowledge of the database. All they
have to do is peruse a list of available
SPROCs and read the descriptions of
each to find out which one suits their
purpose. Supplied with the built-in
descriptions and comments for each
parameter, they are well on their way to
creating a report in a flash.

though, because it just needs to return
a single address from the customer
file. Since the SPROC has an input
parameter for CUST_NUM, the caller
can specify which customer address to
return. Therefore, remove the WHILE/
WEND loop and add a KEY= mode to
the READ RECORD statement so that
the code only reads the record the client
requests. The resulting code appears in
Figure 9.

Testing the Completed SPROC
With the final code changes in place, it
is time to test the SPROC once again.
This time supply an actual customer
number for the input parameter and the
SPROC will return live data from the
ChileCompany Customer data file. In
EM’s SQL tab, run the query once again
but this time specify a six-digit customer
number as the input parameter. The
SPROC will successfully retrieve the
customer’s shipping address from the
database and display it as a result set in
a grid as shown in Figure 10.

With a fully functional SPROC, a
plethora of applications can access the
customer data via SQL. The iReport
Designer, covered in more detail in this
issue's Recipes for Successful Report
Writing on page 6, is a perfect example.
Report authors traditionally use SQL
queries to retrieve data for their reports,
and a call to the new SPROC is just the
ticket. After all, the report data can be
the result of any query – whether it is
accessing a table, view, or SPROC. In
Figure 11, iReport’s Services section of
the IDE demonstrates this by dutifully
offering a list of available tables, views,
and SPROCs for each database
connection.

The new SPROC, CUSTOMER_
ADDRESS, shows up in the list
of available procedures for the
ChileCompany Database. Expanding
the SPROC node reveals the list of
its parameters. For each database
connection, iReport talks to the back-
end database and gathers metadata
regarding the tables, views, and stored
procedures. iReport takes this a step

> >

DBMS

38

Figure 9. The final READ RECORD code in the SPROC

Figure 10. Testing the SPROC in EM

further by gathering details such as the
description for each SPROC and the
data types and comments for every
parameter. The screenshot in Figure 11
demonstrates this by displaying the input
parameter and description for this new
SPROC in its properties window. Notice
that the Notes field in the properties
window reflects the SPROC description
that was filled in when originally creating
the SPROC (see Figure 1). By including
helpful comments and descriptions for
SPROCs and their parameters, it makes
it much easier for the end users to create

http://www.basis.com/advantage/mag-v13n1/reportwriting.pdf
http://www.basis.com/advantage/mag-v13n1/reportwriting.pdf

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 3 • A u t u m n 2 0 0 9 www.basis.com

Summary
Anyone who followed these steps
has completed their first stored
procedure and it is ready for action.
Not bad for a few minutes worth
of work! Armed with Enterprise
Manager’s new SPROC template
generation and the fact that BBj
stored procedures can leverage
existing legacy code and utilize
standard BBx syntax like READ
RECORDs, creating SPROCs are
now a snap. Legacy programmers
are empowered to expose their
databases and business logic to
other SQL applications safely,
securely, and with the blazing speed
of native access.

39

Figure 11. iReport shows the available SPROCs, parameters, and descriptions

.

DBMS

